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Drastic metabolic alterations, such as the Warburg effect, are
found in most if not all types of malignant tumors. Emerging
evidence shows that cancer cells benefit from these alterations,
but little is known about how they affect noncancerous stromal
cells within the tumor microenvironment. Here we show that
cancer cells are better adapted to metabolic changes in the micro-
environment, leading to the emergence of spatial structure. A clear
example of tumor spatial structure is the localization of tumor-
associated macrophages (TAMs), one of the most common stromal
cell types found in tumors. TAMs are enriched in well-perfused
areas, such as perivascular and cortical regions, where they are
known to potentiate tumor growth and invasion. However, the
mechanisms of TAM localization are not completely understood.
Computational modeling predicts that gradients—of nutrients,
gases, and metabolic by-products such as lactate—emerge due to
altered cell metabolism within poorly perfused tumors, creating
ischemic regions of the tumor microenvironment where TAMs
struggle to survive. We tested our modeling prediction in a cocul-
ture system that mimics the tumor microenvironment. Using this
experimental approach, we showed that a combination of metab-
olite gradients and differential sensitivity to lactic acid is sufficient
for the emergence of macrophage localization patterns in vitro.
This suggests that cancer metabolic changes create a microenviron-
ment where tumor cells thrive over other cells. Understanding
differences in tumor-stroma sensitivity to these alterations may
open therapeutic avenues against cancer.
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Cancer cells in tumors display pronounced metabolic alter-
ations (1–10). The genetic and biochemical mechanisms

behind these changes are under intensive investigation, but the
question of how metabolic changes affect noncancerous cells in
the tumor microenvironment remains largely unanswered. The
Warburg effect—or oxidative glycolysis, a process whereby cells
exhibit a high glycolytic rate even in the presence of oxygen—is
arguably the best-known metabolic alteration in cancer (1). Due
to a lower yield of glucose to ATP associated with glycolysis, the
Warburg effect was initially viewed as a detrimental aberration
(1, 5). However, it is now clear that ATP is not a limiting re-
source for cell growth (4, 9) and that glycolytic alterations in-
crease glucose and glutamine uptake, enhance reductive power,
and favor anabolism by retaining carbon-rich macromolecules (4,
7, 9). Thus, rather than being detrimental, metabolic alterations
in tumor cells can be required to sustain the high proliferation
rate that characterizes malignant cancers (4, 7, 9). In fact, similar
metabolic changes occur in healthy processes with rapid pop-
ulation growth such as pluripotent stem-cell proliferation (11),
T-cell activation (12), embryonic development (13), and wound
healing (14), suggesting that cancer cells have co-opted con-
served metabolic processes used by rapidly proliferating cells
(4, 7, 9).
Despite their beneficial effect for cell proliferation, metabolic

changes have dramatic consequences on the extracellular milieu.
Alterations in tumor metabolism were first identified by studying
how cancer cells alter their culture media (1, 5). Chaotic vas-
cularization can be a feature in tumors in vivo, which intensifies

the effect of cancer cells on their microenvironment and causes
damaging processes such as acidosis, hypoxia, and nutrient
deprivation (15, 16). Thus, cancer cells must balance the benefits
of an altered metabolism with its potentially toxic extracellular
consequences.
Cancer is a disease of clonal evolution where different cell

lineages compete (17, 18). Mathematical models in the literature
suggest that metabolic modifications can be advantageous for
lineages competing within tumors (16, 19–21). Nonetheless, how
stromal cells within tumors cope with these changes has been
largely neglected. Thus, it is possible that a toxic microenviron-
ment created by metabolic alterations may be a mechanism for
cancer cells to gain a selective advantage.
We focused our study on how tumor metabolism affects

macrophages. Tumor-associated macrophages (TAMs) are one
of the most common stromal cell types found within tumors, and
their number is directly correlated with poor patient prognosis in
the majority of cancers analyzed to date (22–26). TAMs are well
adapted to, and recruited toward, low-oxygen-tension regions
(22, 27, 28). However, TAMs in vivo are also enriched in well-
perfused regions of the tumor—such as the invasive edge and
perivascular areas—where they potentiate cancer progression
and invasion (29–31). Other tumor-associated stromal cells, live,
or even dying cancer cells are known to recruit macrophages to
the tumor (32–34). Nonetheless, why resident and recruited
macrophages do not infiltrate the tumor homogenously remains
poorly understood. An intriguing hypothesis then is that TAMs
may be precluded from poorly perfused regions because meta-
bolic alterations generate a toxic environment where only adapted
tumor cells can survive.

Significance

Cancer cells undergo dramatic metabolic alterations, such as
the Warburg effect where glucose is consumed independently
of oxygen, leading to high lactic acid production. Although
these alterations can give growth advantages to cancer cells,
they have a profound effect in the extracellular environment,
and thus it is not clear how they affect healthy cells. Here we
show that lactic acid accumulation can impair the survival of
tumor-associated macrophages. Using a multidisciplinary com-
bination of computational and experimental methods, we show
that this decreased survival can lead to spatial patterns of
macrophage localization that resemble how tumor-associated
macrophages distribute in real tumors. Spatial patterns can
potentiate tumor growth, and thus understanding how they
are formed may bring therapeutic insights.
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Here we show that metabolically altered microenvironments
can indeed provide cancer cells with a selective advantage. In
particular, these cancer cells are more resistant than macro-
phages to high levels of lactic acid produced by their glycolytic
metabolism. We combine computational modeling with a custom-
made cell culture system that allows the emergence of spatially
graded microenvironments ranging from well-perfused to ischemic
regions. With this approach we show that differential sensitivity to
lactic acid between cancer cells and macrophages is sufficient to
generate localization patterns that resemble in vivo observations.

Results
Glycolytic Cancer Cells Are Adapted to Lactic Acid. We first in-
vestigated the impact of the metabolic activity of cancer and
stromal cells on their surrounding microenvironment. We used
primary bone marrow-derived macrophages (BMDMs) as our
model for stromal cells and MTLn3 cells, an aggressive meta-
static breast adenocarcinoma line widely used in tumor-stromal
studies (35), as a model cancer cell line. When grown for 24 h,
MTLn3 cells, but not macrophages, significantly increased lac-
tate levels and decreased glucose levels in the culture media even
in the presence of oxygen, evidencing enhanced oxidative gly-
colysis [Fig. 1A; note that these trends are maintained when
metabolites levels are normalized by total biomass (SI Appendix,
Fig. S1A)]. In addition, MTLn3 cancer cells showed higher glu-
tamine consumption, as has been reported for other cancer cells
(36), whereas other measured metabolites were not substantially
changed (SI Appendix, Fig. S1A). We confirmed these observa-
tions by measuring glucose consumption and lactate production
in a panel of cancerous and noncancerous cells. All tested cancer
cells showed a similar behavior to MTLn3, whereas low passage,
nontransformed, mouse embryonic fibroblasts (MEFs) behaved
similarly to macrophages (SI Appendix, Fig. S1B). These data
confirm that at least a panel of cancer cells, but not stromal cells,
display typical metabolic alterations such as the Warburg effect.
Next, we examined how MTLn3 cells and macrophages adapt

to nutrient depletion. We examined the role of starvation by

culturing cells for 24 or 48 h under a range of nutrient compo-
sitions and measuring cell viability. Most viability methods rely
on measuring activity of metabolic enzymes at a population level,
which may be altered by nutrient limitation and produce exper-
imental biases. We circumvented this limitation by adding a
fluorescent dye that is incorporated only by cells with compro-
mised cell membranes. This allowed us to measure viability at
the single-cell level using microscopy and image analysis (SI
Appendix). Starvation by the withdrawal of glucose, glutamine, or
serum did not have a significantly different effect on the survival
of either cell type (SI Appendix, Fig. S2A). Likewise, hypoxia, i.e.,
oxygen starvation alone or combined with different nutrient
deprivations, did not induce notable differential changes in the
viability of the cells (SI Appendix, Fig. S2A). The observation that
macrophages remain viable under oxygen deprivation is consis-
tent with reports of macrophages being recruited to anoxic and
necrotic regions of tumors (28) and the observation that mac-
rophages survive and adapt well to hypoxia (27). In summary,
nutrient deprivation and hypoxia appear to affect MTLn3 cells
and macrophages equivalently.
Next we investigated the effect of lactate on cell viability,

because its secretion levels are remarkably different among tested
cancerous and noncancerous cell lines. Adding lactic acid to the
growth media showed that, although extremely high levels of
lactic acid are lethal for both MTLn3 and macrophages, MTLn3
cells survive better than macrophages at intermediate levels
(∼25–30 mM; Fig. 1B). These levels of lactic acid are close to the
ones produced by MTLn3 cells (Fig. 1A) and to those reported in
human tumors (37, 38). Control experiments carried out using
sodium lactate instead of lactic acid did not show a significant
difference in survival, suggesting that the detrimental effect of
lactic acid to macrophages is through media acidification (SI
Appendix, Fig. S2B). Additional experiments with our cell panel
using lactic acid confirmed that cancerous cell lines tend to be
more resistance to lactic acid than macrophages and MEFs (SI
Appendix, Fig. S2C). Furthermore, MTLn3 cells are also more
resistant than macrophages to acetic acid, supporting the role of
pH in cell viability (SI Appendix, Fig. S2D).
To evaluate whether this differential effect still occurs when

the two cell types share the same microenvironment, we cocul-
tured MTLn3 and macrophages at a range of lactic acid con-
centrations and measured the relative contribution of each cell
type to the final population after 24 h. Lactic acid specifically
reduced the proportion of macrophages in the coculture pop-
ulation (Fig. 1C), confirming that MTLn3 cells are fitter when
lactic acid accumulates. This effect can be reverted by the ad-
dition of bicarbonate to the media, further confirming the role of
pH (SI Appendix, Fig. S3 C and D).

Model Reveals That Restricted Perfusion Generates Metabolic
Gradients and Spatial Structure in Cell Populations. TAMs in vivo
are enriched in well-perfused regions of large tumors such as in
perivascular regions and at the invasive edge (Fig. 2A and SI
Appendix, Fig. S4). However, in small tumors TAMs are usually
dispersed throughout the tumor mass (30) (SI Appendix, Fig. S4).
The differential sensitivity shown in our experiments suggests
that macrophages may not survive in conditions of high lactic
acid concentration, which is more likely to occur in larger, poorly
perfused, tumors (16). We therefore asked whether the accu-
mulation of lactic acid in poorly perfused regions is sufficient to
explain the localization patterns of macrophages. Computational
models have shown that glycolysis would lead to lactate gradients
due to increased secretion and to steep drops in pH (16, 19), but
the effect of these gradients on stromal cells remains unexplored.
Thus, we created a computational model where a mixed pop-
ulation of tumor cells and macrophages coexist in a confined
space representing tissue adjacent to a blood capillary or at the
tumor edge next to normal tissue (Fig. 2B). In this model, cells
consume resources (e.g., glucose and oxygen, denoted as “R” in
Fig. 2B) at rate q and secrete metabolic waste products (such as
lactic acid, denoted as “W” in Fig. 2B) at rate k. Resources
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Fig. 1. Cancer cells are adapted to toxic environments produced by the
Warburg effect. (A) MTLn3 breast cancer cells but not macrophages (ΜΦ)
display the Warburg effect. (B) Macrophages are more sensitive to lactic acid
that lowers media pH. (C) Boxplots showing the effect of lactic acid on in
cocultures. The red plus sign (+) denotes outliers. (Right) Representative
examples. Error bars in A and B represent SD from the mean obtained in at
least three triplicated experiments. Data points are always obtained from
independent visual fields. *P < 0.05.
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diffuse into the system from one side (with diffusivity DR).
Similarly, waste is cleared via the same side with diffusivity DW.
In our experiments, cancer cells and macrophages are equally
resistant to starvation and hypoxia (SI Appendix, Fig. S2A), but
macrophages are more sensitive to lactic acid levels (Fig. 1 B and
C). Because lactic acid production increases in low oxygen
(Fig. 1A), hypoxia could lead to macrophage death indirectly due
to lactic acid accumulation. Thus, in our model the levels of
waste (lactic acid) are a function of resource (oxygen) depletion
(SI Appendix, Table S1).
Solving the model analytically gives the expected decreasing

curve for R and increasing levels of W (Fig. 2C). Using this
model, and incorporating biophysically relevant parameters (SI
Appendix, Table S2), we simulated the evolution of a cell cocul-
ture using an agent-based computational approach. We adopted
an established off-lattice agent-based modeling (ABM) frame-
work used to model other complex multicell systems such as
bacterial biofilms (39, 40). Similar approaches have been used to
model tumor growth (20, 41). In this ABM framework, cells are
modeled as discrete agents with rules that mimic the behavior
of cells (growth, division, death, etc.), whereas gradients of metab-
olites are modeled using continuum partial differential equations
(SI Appendix) (39). Under these conditions, the simulated cancer
cells and macrophages coexist in well-perfused regions, but only
cancer cells are able to survive in ischemic regions (Fig. 2D,
“Tumor”; SI Appendix, Movie S1). In contrast, when we conduct
the simulations making oxygen 10 times more diffusive to in-
crease perfusion, the spatial structure is lost (Fig. 2D, “Control”;
SI Appendix, Movie S1). Thus, spatial structure can be an emer-
gent property if cells have different sensitivities to microenvi-
ronmental conditions when perfusion is poor. Importantly, in our
simulations, spatial heterogeneities are not externally imposed
but are the result of diffusion and reaction processes. Similar
models have been used to explain the formation of necrotic cores
(42) or the evolution of more aggressive tumor clones (16, 19, 20).
Here, our model shows that self-generated gradients can play an

important role in the spatial distribution of cancer cells and
tumor-associated macrophages resembling in vivo observations.

Experimental Validation with a Tissue Mimetic System. Computa-
tional model predictions can be compared with in vivo data, such
as imaging (43, 44), but models are difficult to test experimen-
tally. In vivo manipulations are technically challenging and in
vitro models often neglect important features such as spatial
structure. To circumvent these limitations, we adapted a tissue-
mimetic culture system (45) to mimic the tumor microenviron-
ment in vitro. This setup allows coculture of different cell types
and the spontaneous formation of gradients while still permitting
direct cell imaging (Fig. 3A and SI Appendix). Briefly, cells are
cultured in a small volume (in the ∼50-μL internal chamber) that
is connected to a larger volume (the ∼2-mL external chamber)
through a small slit or opening (∼0.3 mm wide). The external
chamber thus constitutes a bulk source of nutrients and provides
a sink of waste products, creating a directional gradient of any
diffusible substances consumed or produced by cells in the in-
ternal chamber. The self-generated gradients in this simple setup
ensure that cells proximal to the slit will be well perfused,
whereas cells distal to the slit will be progressively more ischemic
(Fig. 3A). The cell population cultured in the interior chamber is
imaged using a programmable motorized microscope stage and
tiled microscopy to build large-scale mosaics of adjacent pic-
tures, producing images that combine high resolution with a wide
field of view. Thus, we can investigate cell populations at mul-
tiple scales from the single-cell to multicellular level simulta-
neously (Fig. 3 A and B; SI Appendix, Fig. S5A).
We first confirmed that our system allows the spontaneous

formation of metabolite gradients. We used a glioma cell line
(C6-HRE-GFP) that expresses GFP under hypoxic conditions
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(46) as a reporter for oxygen limitation. We used two experi-
mental controls. First, we produced a similar culture system but
without the separation between the two chambers. Under these
conditions, diffusible substances can diffuse freely to and from
the bulk above the cells, and therefore no horizontal gradients
should be formed. Second, we modified our graded assay by
separating the two chambers with a gas-permeable membrane of
olydimethylsiloxane (PDMS). In this setting, certain diffusibles
such as glucose and lactate will not permeate through the
membrane. However, oxygen and other gases can diffuse freely
(47). As expected, no GFP was detected in either of the control
settings, and cells maintained their viability, confirming that ox-
ygen permeates PDMS freely. In contrast, in the glass-separated
chamber, GFP levels increased significantly in a manner de-
pendent on the distance from the slit, showing evidence of oxy-
gen limitation (Fig. 3C and SI Appendix, Fig. S5B). Hence, our
system allows the spontaneous formation of oxygen gradients
due to its diffusion into the internal chamber antagonized by cell
consumption, similar to the process in actual tumors (42).
We next asked whether waste products, and lactic acid in

particular, accumulate within our assay. We measured the levels
of relevant metabolites in the internal chamber and in the ex-
ternal chamber (Fig. 3D). Most measured metabolites did not
show significant changes. However, the levels of lactate in the
small internal chamber were more than fourfold higher than
those in the external chamber (Fig. 3D; note that these are av-
erage values, and thus levels in ischemic regions are expected to
be even higher). Visual inspection of any cell culture in our
graded microenvironment chamber clearly reveals that pH gra-
dients are formed because phenol red in the media gains a yellow
hue in the deep interior regions, indicating low pH, while it
retains its pink color near the slit. To assess this more rigorously,
we measured spatial gradients of pH directly using BCECF,
a widely used fluorescent ratiometric pH probe. After only 2 d of
culture, clear pH gradients emerged in our graded microenvi-
ronment chamber (SI Appendix, Fig. S6). Taken together, these
data show that the in vitro cellular system adequately models the
gradients of resources, the accumulation of waste products, and
the pH gradients that occur within tumors.

Emergence of Spatial Structure in Tumor/Macrophage Cocultures.We
cocultured MTLn3 cells and macrophages using our graded
microenvironment system. Typically, an ∼105 cell homogenous

mix of macrophages and MTLn3 cells at a 1:1 ratio was seeded.
As expected, in cocultures with no gradients both cell types
remained evenly distributed during the entire experiment (1 wk)
(Fig. 4A). In sharp contrast, when diffusion was limited by the
glass cover, spatial structure emerged in the cell population after
a similar time (Fig. 4B). In well-perfused regions close to the slit,
macrophages coexist with MTLn3 cells. However, in distal
regions, the number of macrophages drops significantly relative
to MTLn3 (Fig. 4B, P < 0.0001). Using the position of macro-
phages, we calculated macrophage density as a function of the
distance from the slit (SI Appendix, Fig. S7 A and B). We found
that macrophage density drops ∼10-fold in ischemic regions (SI
Appendix, Fig. S7C). Although macrophages are affected the
most, metabolic gradients additionally affect MTLn3 cells as
their density also drops. In fact, high-cell-density clumps are
visible in the culture without cover whereas in the graded con-
dition there is high cell density only near the slit (Fig. 4A). We
conducted the same experiment with two alternative cancer cell
lines, H1650 or MDA-MB-231, also in coculture with macro-
phages. The experiments showed similar emergence of spatial
structure (SI Appendix, Fig. S8A).
Our computational model predicts that lactic-acid–induced

patterns occur even when glucose, and other nutrients, are not
limiting. If this is correct, cocultures under nutrient gradients,
but with uniformly low-lactic-acid levels, should not display
spatial structure. To test this, we used a PDMS separation be-
tween the two chambers that, because of its oxygen permeability,
will diminish lactic acid production (Fig. 1A). No spatial struc-
ture emerged under these conditions (SI Appendix, Fig. S7C),
supporting that the hypoxic boost in lactic acid production is
required for the emergence of spatial structure. Because mac-
rophages are not directly affected by hypoxia (SI Appendix, Fig.
S2A) but hypoxia can lead to high levels of lactic acid that are
lethal for macrophages (Fig. 1 B and C), we conclude that meta-
bolic alterations of the microenvironment cause macrophage death
and the spontaneous emergence of tumor spatial structure.

Macrophage Death Due to Glycolytic Metabolism.Macrophages also
produce lactic acid, especially under hypoxia, but they do so at
a much lower level than MTLn3 cells (five- to eightfold lower
levels, Fig. 1A). Accordingly, macrophages cultured alone at
the same initial density showed little or no spatial structure (SI
Appendix, Fig. S8B). However, in theory, higher numbers of
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Fig. 4. Emergence of spatial structure in tumor/
macrophage cocultures. (A) Cocultures with no
gradients show no spatial structure as the distribu-
tion of macrophages (ΜΦ, labeled in green with
CD68) and cancer cells is not significantly different
(boxplots). (B) Spatial structure emerges when
cocultures are performed in the culture system that
mimics the tumor microenvironment. (C and D) Ef-
fect of cell migration. (C) Comparison of macro-
phage migration in normal versus ischemic regions.
Rose plots show that macrophages move evenly in
all directions [direction vectors are not different
from a distribution of random vectors (P > 0.5,
modified Rayleigh’s test)]. (D) Mean square dis-
placement (MSD) analysis shows that macrophage
movements are subdiffusive. Blue line indicates
diffusive movement (slope = 1). (E) Percentage of
nonviable macrophages increases over time and
with the distance from opening. (Right) Represen-
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resentative cases. Experiments were repeated at
least two times.
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macrophages should produce enough lactate to reproduce the
localization patterns. We therefore repeated the experiment, but
this time seeding ∼106 macrophages (10× the previous cell
density), and we were able to generate spatial structure in
macrophage monocultures (SI Appendix, Fig. S8B). Macrophage
disappearance was so extreme that virtually no macrophages
could be found in ischemic regions (SI Appendix, Fig. S8C).
These data support the conclusion that the spatial structure
observed in cocultures is not caused by cancer cells specifically,
but rather by the accumulation of metabolic waste products.
The patterns in our model can be explained by cell death (Fig.

2D). An alternative mechanism is that cells migrate from ische-
mic to well-perfused regions. To test this, we performed time-
lapse imaging on cocultures within the graded microenvironment
assay. We took advantage of the combination of high resolution
and the wide field of tiling microscopy to track individual mac-
rophages over a large area (∼5.4 × 0.65 mm). For quantitative
analyses, we defined two regions of interest: the region com-
prising the first 2 mm proximal to the slit was designated as
“Normal,” and the distal 2 mm of the image was designated as
“Ischemic” (Fig. 4C). Initially the two cell types were distributed
along the entire area but, after 72 h, macrophages were practi-
cally absent from the ischemic region (SI Appendix, Movie S2).
More than 700 trajectories were analyzed. Only small but sta-
tistically significant differences in speed and persistence of nor-
mal versus ischemic macrophages were found (SI Appendix, Fig.
S9 A and B). Nevertheless, there was no significant preference in
the direction of migration that could explain the spatial structure
observed in our experiments (Fig. 4C). More formally, the mean
square displacement of either macrophage group was diffusive or
subdiffusive, revealing no directional bias toward the slit (Fig.
4D). The calculated diffusivity constant for these cells was less
than 2 μm2/min (1.7 ± 0.2 μm2/min in the highest case), which
means that the cells would require times on the order of months
to travel the distances in the millimeter scale required to explain
the patterns. Thus, the role of cell migration in determining this
spatial structure is negligible.
It is possible, then, that ischemic macrophages undergo a

metabolic collapse due to high lactic acid, low glucose, hypoxia,
etc. In fact, careful examination of the later frames in the time-
lapse imaging movie shows that ischemic macrophages indeed
slow down their movements, round up, and eventually disappear
(SI Appendix, Movie S2). Cells typically round up in shape before
dying (48). Accordingly, calculation of cell circularity shows that
macrophages distal to the slit tend to be more circular than
proximal ones (SI Appendix, Fig. S9C). To examine cell death
more closely, we performed a time-lapse of a high-density mac-
rophage culture with propidium iodide (PI) in the media to label
nonviable cells (SI Appendix, Movie S3); PI is more adequate
for time-lapse experiments (SI Appendix). As shown in Fig.
4E, the proportion of nonviable macrophages significantly
increases over time but only for macrophages distant from the
slit. Together, these results show that cell death, not migration,
drives pattern formation because ischemic regions of the gradient
assay are more toxic for macrophages than for MTLn3 cancer cells.

Role of Macrophage Recruitment in Spatial Structure. Our mea-
surements show that macrophage motility does not play a role in
the emergence of spatial structure in the in vitro graded micro-
environment. In vivo, however, macrophages can be activated
and recruited to a tumor (22, 23, 32–34), and this active re-
cruitment is likely to have an important role in TAM spatial
structure. To test the role of TAM recruitment on spatial orga-
nization, we conducted 2D simulations of an expanding tumor
with and without macrophage recruitment. We adapted the com-
putational model to simulate an expanding tumor mass surrounded
by well-irrigated stroma (SI Appendix, Fig. S10A) and simulated
several scenarios by varying (i) the presence of macrophages in
the initial tumor, (ii) the recruitment of macrophages to the
tumor, and (iii) different values for the relative sensitivity of
cancer cells and macrophages to an acidic environment. The

simulations showed that macrophage recruitment can lead to
spatial structure, but macrophage sensitivity to an ischemic en-
vironment can greatly enhance the effect (SI Appendix, Fig. S10
and Movie S4). To test the role of macrophage recruitment
further, we conducted additional chamber experiments where
macrophages were introduced in the chamber only after 48 h.
Consistent with our model, macrophages could not colonize
deep regions within the system (SI Appendix, Fig. S11), sup-
porting that the ischemic environment plays a key role in spatial
patterning even when macrophages arrive in the system at later
stages of tumor development.

Discussion
Mathematical models of cancer have been developed for more
than half a century, but only recently have oncologists recognized
their value (49). Here we used a combination of mathematical
modeling and in vitro experiment to show that cell metabolism
can spontaneously create spatial heterogeneity in the extracellular
milieu when perfusion is limited. Low-grade early tumors typically
have TAMs, but these are homogenously spread throughout the
tumor, showing no evident spatial structure. Spatial structure
where TAMs are enriched at the edge of tumors is evident only
in later, possibly more ischemic, tumors (SI Appendix, Fig. S4)
(30). Our model provides a mechanistic explanation for these
observations, suggesting that microenvironmental heterogeneities
are key to establishing spatial patterns of localization of tumor-
associated macrophages.
In addition to being at the edge of large tumors, TAMs can

also be found in necrotic/anoxic regions from where they are
proposed to promote angiogenesis (28). This is consistent with
our experiments, as hypoxia per se does not kill macrophages (SI
Appendix, Fig. S2A). Hypoxia and pH levels in tumors are not
always correlated (15). Thus, we expect that TAMs in the ne-
crotic core could survive in regions that, despite being hypoxic,
have lower levels of lactic acid (50). Accordingly, in our experi-
ments we have observed that macrophages can survive in hypoxic
regions where there are fewer cancer cells.
Our model does not rule out additional mechanisms for spatial

patterning of TAMs (22, 23, 32–34). Macrophages can infiltrate
through tissues via para- or transcellular migration (51). However, it
is not clear why infiltrating macrophages do not adopt a homoge-
neous distribution within tumors. Our results suggest one expla-
nation: the same microenvironment that is lethal for macrophages
in our culture should prevent infiltrating macrophages from colo-
nizing deep regions of the tumor. Thus, the effect of metabolic
alterations on the tumor microenvironment may synergize with
other known mechanisms of macrophage localization.
We investigated spatial structuring of TAMs, which typically

constitute the most prominent stromal cell population in tumors
and often promote tumor progression (23, 24, 52, 53). Clinical
evidence shows that the colocalization of carcinoma cells and
macrophages near capillaries is correlated with metastasis in
breast cancer (54). Thus, spatial structure may be a key element
in tumor-promoting activities of TAMs. For example, localized
invasion and entry of cancer cells into the bloodstream may be
more effective when macrophages are not evenly distributed.
Nonetheless, the metabolically altered microenvironments can
have effects on stromal cells other than TAMs and, thus, may be
a general mechanism for the emergence of spatial structure. For
example, human cytotoxic T lymphocytes infiltrating lactic-acid–
producing multicellular tumor spheroids have reduced cytokine
production and proliferation, and low pH induces anergy (55, 56).
The intimate link between metabolism and intracellular pro-

cesses, such as cell-signaling cascades and gene regulation, has
revitalized tumor metabolism research (2–9). However, most
studies focus on the intracellular mechanisms, and little attention
has been paid to the extracellular consequences of cancer me-
tabolism. We show here that tumor metabolic alterations can
have a considerable impact on their microenvironment, leading
to alterations of tumor-stromal spatial structure. If shown to be
widespread, the modulation of cell metabolism and the extracellular
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milieu composition may open therapeutic possibilities. At the
same time, they may force a rethinking of the microenviron-
mental consequences of current therapeutic strategies. For
example, because ischemic regions can favor the emergent-
resistant and aggressive clones (57, 58), therapies that target
processes such as angiogenesis can lead to more and larger
ischemic regions and potentially select for cancer lineages that
are fitter than stromal cells.

Methods
Extraction and differentiation of BMDMs were performed according stan-
dard protocols (30). The graded microenvironment assay was created
from glass-bottom glass dishes (Matek) based on a tissue mimetic assay

(45). Microscopy was performed using an AxioObserver.Z1 (Zeiss), and
images were analyzed with custom-made scripts in Matlab (MathWorks). For
modeling details and complete methodology, please refer to SI Appendix.
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